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Condensed Node for the TLM Method

Vladica Trenkic, Member, IEEE, Christos Christopoulos, Member, IEEE, and Trevor M. Benson, Member, IEEE

Abstract— A general symmetrical condensed node (GSCN)
for the transmission line modeling (TLM) method, with six
different link line characteristic impedances, six stubs, and six
lossy elements is described for the first time. It unifies all the
currently available condensed nodes into a single formulation
and provides the basis for the derivation of an infinite set of new
nodes, including nodes with improved numerical characteristics.
The GSCN is derived in two ways: 1) from an equivalent network
model and 2) directly from Maxwell’s equations using central
differencing and averaging. The direct correspondence estab-
lished between the GSCN TLM and a finite difference scheme for
Maxwell’s equations provides a rigorous theoretical foundation
for all available TLM methods with condensed nodes.

I. INTRODUCTION

HE SYMMETRICAL condensed node (SCN) [1] has
been the basis of the three-dimensional (3-D) trans-
mission line modeling (TLM) method for many years. To
allow for the modeling of general lossless materials and
nonuniform grading of the mesh cells, the basic 12-port SCN is
augmented by three open- and three short-circuit stubs [1}. In a
development of the SCN referred to as the hybrid symmetrical
condensed node (HSCN) [2], the characteristic impedances of
the link lines are varied to account for mesh grading and to
model magnetic properties of the mesh, and three open-circuit
stubs are used to make up for any deficit in the capacitance.
A complementary HSCN, denoted as the Type II HSCN (3],
was recently developed using different link-line impedances
to model electric properties and short-circuit stubs to correct
for any deficit in inductance. In a further recent development
of the SCN, referred to as the symmetrical super-condensed
node (SSCN) [4]-[6], stubs are removed all together and all
medium parameters are modeled by varying the characteristic
impedances of the link lines. Modifications of the SCN to
account for electric and magnetic losses are described in [7]
and [8] and can be readily applied to all other condensed nodes.
In this paper, we present the development of a general
symmetrical condensed node (GSCN) that unifies all of the
existing condensed node schemes [11-[8] into a single scheme
and provides a template for the derivation of new nodes with
improved propagation properties. A general formulation of the
link and stub parameters is presented in Section II that can be
used in connection with any TLM node. These parameters
are determined by a set of 12 equations that ensure proper
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modeling of the capacitance and inductance of the medium
and preservation of impulse synchronism. In Section III-A, the
scattering matrix for the GSCN is derived from the equivalent
network model [9], [10], which formulates scattering in a
node having six different link-line impedances, three open-
circuit stubs, three short-circuit stubs, and six lossy elements
for modeling electric and magnetic losses. Applying particular
constraints to the GSCN, the scattering matrices for all existing
condensed nodes [1]-[8] and their parameters are derived from
the formulation of the GSCN presented here.

A formal equivalence between the SCN TLM and the time-
domain finite-difference (FD-TD) method was first established
in [11]. Recently, it was shown that the SCN TLM can
be derived directly from Maxwell’s equations applying the
Method of Moments (MoM) [12]. The two above references,
however, consider only the simple 12-port SCN, which cannot
model inhomogeneous and lossy media and is restricted only
to the cubic cells. More practical schemes, namely’ the stub-
loaded SCN and the HSCN, were only very recently derived
directly from Maxwell’s equations, using central differencing
and averaging [13]. A direct theoretical derivation of the Type
II HSCN and the SSCN has not been presented in the literature
so far.

In Section ITI-B, we derive the GSCN directly from
Maxwell’s equations, using principles established in [13]. This
derivation gives the same results for the field components in
the GSCN as obtained using the network model in Section
III-A, thus offering further evidence of the soundness of
the method. Since the symmetrical super-condensed node is
derived from the GSCN by removing stubs, a field-based
theoretical foundation to the SSCN is also established for the
first time.

II. GENERAL TLM CONSTITUTIVE RELATIONS

The total capacitance and inductance of the block of space
with linear dimensions Az, Ay, Az and material properties
g, 1t defined as diagonal tensors

B €z O 0 _ Mo 0 0
E=¢e| 0 &y O B=ypo| O ey O 0Y)
0 0 Eprz 0 0 Morz

modeled by a TLM node, in the 7 direction are given as [14]
AjAE ; AjALk
=0 L= popni i @

where 1, §,k € {z,y,2} and i # j, k. Equations (2) must hold
for any TLM node, constructed by an arbitrary combination

i
Ct = E0€yr;

0018-9480/96%05.00 © 1996 IEEE



2130
Vinz
Vipx
Vzny
v Venx
Vay A
: V}pz
Viny
Vioy
Vsz
y VZP}’
)—x = Vinx
Z Vynz
Fig. 1. 3-D TLM symmetrical condensed node (SCN).

of link lines and stubs, and we refer to them as the general
TLM constitutive relations.

Consider the TLM symmetrical condensed node depicted in
Fig. 1. Let the distributed capacitance and inductance of an ¢-
directed, j-polarized link line be denoted by indexes according
to their direction and polarization as C,, and L,;. The total
capacitance of an open-circuit stub and the total inductance of
a short-circuit stub, contributing to the cell’s capacitance and
inductance, respectively, in the ¢ direction, are denoted as C'}
and L. The general TLM constitutive relations (2) applied to
the condensed node can be written as

AjAk

Ok + CpAj + C = 505”_537 €)
_ Z AjAk

LyAj + LAk + L = propiri == @)

The six equations defined in (3) and (4) by using all possible
combinations of 7, j, k € {x,y, 2z}, represent the basis for the
correct modeling of the medium using a generally graded TL.M
mesh with condensed nodes. They contain eighteen unknown
parameters, namely C,; and L,; of the six link lines, C}; of
the three open-circuit stubs, and L! of the three short-circuit
stubs. Therefore, there are 12 degrees of freedom that can be
specified in the formulation of particular types of symmetrical
condensed nodes.

In time-domain TLM schemes, time synchronism must be
maintained in the mesh, i.e., the time step At must be the same
throughout and therefore six more conditions are imposed in
the form [5]

At = Aiy/C,, L. (5)

With these extra conditions, six degrees of freedom still remain
when solving (3)—(5).

It can be readily shown that the link line and stub parameters
of the existing 3-D time-domain condensed nodes can be
obtained by imposing different constraints to (3)—(5). Based
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on these restrictions, we give a brief classification of the 3-D
TLM condensed nodes used in the time-domain schemes.

1) Stub-loaded nodes use the same characteristic impedance
for all link lines, which sets six constraints of the form
L,;/C,; = const.

2) Hybrid nodes use either open or short circuit stubs, so
that three extra conditions are given by Li = 0 or
C! = 0. The other three conditions are obtained by
demanding that all the impedances of lines modeling
either the same magnetic [2] or the same electric [3]
field components are equal.

3) Super-condensed nodes do not use stubs at all, therefore
six extra conditions are given by C; = 0 and L, = 0 [6].

4) General nodes use a combination of the link line and
stub parameters in a manner that generally differs from
the previous three special cases.

In order to formulate the scattering procedure, the charac-

teristic admittances/impedances of the link and stub lines must
be determined, and they are defined as [15]

1 C.,

Y, = — =
7 Zy L,;

2L
At

207
Yo, = 2
At

Zgi =

(6)

where Y,,, Z;, are the characteristic admittance/impedance of
an ¢-directed j-polarized link line and Y,;, Z,; are the admit-
tance/impedance of the open-/short-circuit stubs contributing
the capacitance/inductance in the ¢ direction. Using the time
synchronism condition (5) and definitions of the characteristic
admittances/impedances of the link and stub lines (6), the
general constitutive relations (3) and (4) can be rewritten as

Yoi

Y 2 Y, = A AL
ke T 72 + 9 €0€ ANt (7)
Z AjAk
T+ Zig + 22 = popr 2228
ik T 2kt = potn R ®8)

In time-domain TLM, losses are modeled by introducing
matched stubs, loaded to the nodes at the scattering points [16].
Their presence does not affect the general system of (3)-(5).
Given the effective electric and magnetic conductivities o.;
and o,,; in the ¢ direction, the parameters of lossy elements
are defined as [7], [8]

AjAk
At

AjAk
Ai ©

Al e —
(762 = Oex Rmz = Omi

1II. GENERAL SYMMETRICAL CONDENSED NODE

It can be seen from the TLM constitutive relations (3) and
(4) that the contributions to the capacitance and the inductance
required in a model can be divided between the link lines
and stubs of a TLM node. Theoretically, it is possible to
develop a general condensed node that will contain six stubs,
six lossy elements, and have all six link lines with different
characteristic impedance. The merit of this formulation is
that it offers scope for optimization by selecting a particular
combination of stubs and link line parameters, which, however,
must satisfy (7) and (8). The properties of the general sym-
metrical condensed node (GSCN) are obtained below using
two different approaches, namely: 1) an equivalent network
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Fig. 2. Scattering matrix of the general symmetrical condensed node (GSCN). (The first row and

port numbering for convenience.)

model and 2) central differencing and averaging of Maxwell’s
equations.

A. Derivation from the Network Model

Scattering in a condensed node scheme is traditionally de-
rived by imposing unitary and other conditions on its scattering
matrix [1]. However, a network model introduced in [9] and
generalized and validated in [10] shows that scattering in
condensed nodes can be conveniently described by scattering
equations derived directly from the set of “equivalent” shunt
and series circuits. For historical reasons and in order to allow
comparisons with previous nodes, we also present the complete
scattering matrix for the GSCN. For the same reasons, we keep
the original node port numbering scheme [1], [15], although
more elegant numbering schemes described recently [171, [18]
yield a more symmetrical form of the scattering matrix.

In the notation used here a voltage coming from the negative
side of the node (assuming the origin of coordinates at the cen-
ter of the node) along an i-directed, j-polarized transmission
line is denoted as V;,,, whereas a voltage coming from the
positive side of the same line is given as Vip, (4,5 € {7, y, 2}
and i # j). Voltages on the open- and short-circuit stubs are
V,; and V,,, whereas the voltages on electric and magnetic
loss elements are V,; and V,;,. In all cases, voltages incident
on the node have superscript ¢ while reflected voltages have
superscript 7.

By following the principles established in [9] and [10], the
complete scattering procedure in the GSCN can be described
by the following equations:

i:q =V;x InZi; — Vfé;j (10)
oy = Ve FlkZiy — Vi, an

where the upper and lower signs apply, respectively, for

column are not part of the matrix. They give the

{(z,2,y),(y,x,2),(2,y,2)}. The equivalent voltage in the 4
direction, V,, is given by
_ 2Yk1(VI:nz + klpz) +

. =

+V

Jpr

2(Ykz + ngz) + Yoz + Gez

2Y,,(V#

Jni

) +2Y,; V2

o

(12)
and the equivalent current contributing to the magnetic field
in the ¢ direction, I;, is given by

I = 2(‘611)k - V;znk + szn] B Vk;tp]
t 2(ij + ij) + Zsi + Rmz
where (i,4,k) € {(,9,2),(y,2,%),(2,2,y)}. The voliages
reflected to stubs and lossy elements are given as

- Vi)

87

13)

Vo=V V} (14)
Vst =17+ V;i (15)
Vo=V (16)
Vini =R I a7

where i € {z,y,2}.

Using the scattering equations (10)—(17), we obtain the
scattering matrix for the GSCN, given in Fig. 2. Because there
are no incident voltages from lossy elements, the matrix S
is written as a 24 x 18 matrix rather then a full 24 x 24
square matrix with zero columns 19-24. The elements of the
scattering matrix S shown in Fig. 2 are

Aoy = Qy — by — dij by =Q; ij

y =Q, —by, +dyy —1 dij = PiLy,

fe =2(1 — P, — Uy) €,y = b,
9;=21-Q, - W,;) i =dy

h,=g;,—1 je=1—fr

kiy =€y L=g,

my, = 2U% NE = —Myg (18)
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with
Oy = Yzjijjjykg B Zi]?:'ij (19)
L, = -Z——]—Z{—]—ZJ 20)
W, = 2(Y,, + Ykﬁi Yoi + Gej @9
Uy i 4)

B 2(Zz] + Z]z) + Zsk + Rmk‘

where indexes ¢, j, k take all possible combinations of z,y, z.

The matrix S can be written in the following partitioned
form, where each submatrix represents one of the matrices
outlined in Fig. 2

S S0 S0
35211028) S(()?;x?,) 0(3%3)
S=| 8210 gBx3)  gEx3) (25)
S SO oo
LSi s 00X S0 |

The indexes In, 0s, ss, el, ml, indicating the physical purpose
of each submatrix, stand for link line, open-circuit stub, short-
circuit stub, electric loss, and magnetic loss voltage ports,
respectively. The superscripts of the submatrices define their
size. Some partitions can be removed from the matrix if stubs
or lossy elements are not used. For example, if short-circuit
stubs and lossy elements are not used in the node, all partitions
with indexes ss, el and ml can be removed from S giving a
15 x 15 matrix.

By removing lossy elements from the node, setting G, = 0
and R, = 0 in (21)—(24) and eliminating rows 19-24 in the
scattering matrix S, it can be shown that the lossless GSCN
conserves energy by confirming that STY'S = Y [19], where
Y is a diagonal matrix with elements corresponding to the
characteristic admittances of link lines and stubs.

The matrix § has identical structure to the scattering matrix
for the stub-loaded SCN [15]. By setting the characteristic
impedances of link lines equal to the intrinsic impedance of
the background medium, i.e., letting Z,, = Zy, the elements
of the GSCN and the SCN scattering matrix become equal, as
expected. If an homogeneous lossless medium is modeled on a
uniform mesh, then stubs and lossy elements can be eliminated
by setting Y,,, = Z,; = Gej = Rpyi, = 0 in (21)~(24) and the
partition S;, of the matrix S becomes equal to the original
12-port SCN matrix [1] with the elements a;, = ¢,; = 0 and
by = d,, = 1/2.

Similarly, by setting Z,, = Z,, and Z,, = 0, for all
combinations of indexes ¢,7,k € {z,y,2},7 # j,k and
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eliminating partitions of S related to the short-circuit stubs,
the scattering matrix of the HSCN [2], [3] is derived. The
scattering matrix for the Type II HSCN [3] can be derived
from § by setting ¥, = Y3,, Yo; = 0 and eliminating the
partitions related to the open-circuit stubs.

The scattering matrix for the SSCN is derived from the
GSCN by eliminating row/columns 13-18 of § and setting

Yo; = Z, = 0. If a lossless medium is modeled, then
the SSCN scattering matrix is defined by the submatrix Sy,
with elements a,;, = 1 — by, — d,,, ¢ = di; — bz, by; =

C’ik and d;; = LJ, as derived in [6]. This matrix applies
also for frequency-domain TLM schemes with different line
impedances [20], [21].

B. Derivation from Maxwell’s Equations

We now derive the GSCN TLM scheme directly from
Maxwell’s equations, by employing a procedure similar to that
used in [13]. Maxwell’s equations, written in the Cartesian
coordinate system, are given as

e, OB _OH, oH;
0&rg It — aj Sk Oeidlg
O0H; OF; E
_O8; OB, u. (26)

MOIJ"I”LW =0k a;

Six equations are contained in (26) if the mapping of indexes
is introduced as

(1,5, k) € {(z,9,2), (y,2,3), (2,7,9)}.

The mapping given by (27) will be used throughout
this subsection. It allows the rotation of dummy indexes
1,7,k in an arbitrary expression F, making the expressions
F(i,5,k),F(j,k,i) and F(k,4,7) equivalent.

After performing coordinate and field transformations given
by

27

k=kAk; t=1{At

where k € {z,y, 2z}, Maxwell’s equations (26) can be rewrit-
ten as

__ NAROV, 9L, oL AjAk,
AL 9F ok 8] % A
AjAKOT, OV v, AjAk

O Mo NiAt af = Bj 8];; _UsziIz‘ (29)

By further inserting (7)—(9) into (29), we obtain

Y\ oV, 98I, &I
le Yz+ ~ = »J - ~ ‘_Gezvvz
( bt It ) oi ok 9
Zs\ 08I, 8V, OV
Zik+ Zrj + — | = = — — —L — R,.. 1.
<1k+ kit 2>8t 3 o R...I,. (30)

In this formulation, Y, Z, @, and R can be formally con-
sidered as coefficients introduced into Maxwell’s equations
to conveniently represent material parameters and cell dimen-
sions. They are chosen in a manner to allow for sufficient de-
grees of freedom demanded by the GSCN. However, through
(7)—(9), these coefficients have the physical interpretation as
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the link and stub admittances/impedances of the GSCN. In the
derivation of the SCN presented in [12] these coefficients were
not explicitly introduced since there were no stubs and all the
link-line impedances were identical.

Following [13] we introduce mixed space-time coordinates
as

Go=k+t m=k-1
for k € {z,y,2} and rewrite (30) as
Ykz’ B(V I'Zki) _ 8(1/; + IJZ]“')
3 oy,
oV, — Iijz))
on,

V -l— IkZﬂ)

= +G€’LV—~O

I; ij 6(Vk -+ IiZ]k))

¢, n;

(Vi + L.Zy;) a(VJ - Ile]))
73 ong.

Ek
Z_a
2 ot
(Vi

+a("

Lo Ol
2 ot

By using central-differencing at point (n, p, q, r) [13], where
n is a time and p,q,r are space coordinates, a set of finite
difference equations can be obtained from (31). The space
coordinates of the cell’s boundaries and the cell’s center are
referred to as

(p+ %qur) :(‘Ti) (pgx %,T) = (yi)
(par+3) =) (@.a7)= (0
The terms associated with the mixed coordinates & are
differenced as, for example

oV, —I,Zy,
—(—‘@J—k) = ot/ Valk1) = nsy2) L (67) Z1a)
= =) Vilk™) = n—/2) L, (k™) Z1)

whereas terms associated with 7, are differenced as, for
example
8(Vz + T j Zki)
O

+
_1
2

+

€2Y)

m

=l Valk) + o) L (K7) Zga]
= [t/ Vilk™) + nray2)Li (k™) Zril-
The terms associated with the time coordinate £ are differenced
as, for example
v,
3 — n—q/2)Vi(c).

Similarly as in [13], we now introduce the variable transfor-
mation in order to establish relationships between the electric
and magnetic field components at the cell boundaries and the
incident and reflected voltages at the cell center:

nx/Vak ) £zl (k1) 2 =2 2 Vi,
w2 Va(E) F ngynli(K7) 2k =2 Vi,

n¢<1/2)V(J )$n$(1/2)1k( ) i =92. V;Lp:
n:F(l/Z)Vz( ) n:F(l/Q)Ik(j )Zﬂ. =92. V—]znr;

= nt(1/2)Vi(0)

(32
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where the upper and lower signs, respectively, correspond to
the incident and reflected voltages.

A similar transformation which establishes a correspon-
dence between the electrical and magnetic field components
at the cell center and the incident and reflected voltages on
the open and short stubs is given as

2,7
Vo

i,7
nVel

nxa/2)Vi(c) =25

n$(1/2)Ii(C)Zsz =F 2. (33)

By substituting transformations (32) and (33) into difference
equations obtained from (31) we derive

= Yii - (n Vi, + V,;;,,.) + Y50 (Vi + nVip)
+ 1foz nVr + Gei n (C)

an + V;’pz) + YOi . nvz

(34)

V’I"

™
nVYink — nVipk T
= —[n

These two equations represent, respectively, the charge and
the flux conservation laws in the ¢-direction [22].

Another set of finite difference equations can be obtained
from (30) by using central differencing at point (n +

1/2,p,q,r)

an] + Vk:p] +n VT + Ry - nIi(C)

nd‘n] + nVip; + nVal. (39

2
jnk T n ]pk -

Y,
(Ykz‘ + Y+ "2-) [n+1Vi(e) = nVi(e)] + Gei * nty2)Vile)
= [y Li(kT) = nya/2) (k7))
— ot/ k() = nryol(G7))
ZSZ r
( ik + Zry + 5 )[n+111(6) = ndi(€)] + Rme - ng1/2)Li(c)

= [tV U) — a2 V(7))
= lnt/2)Vs (k1) — nrqyy Vi(k7)).

Terms ,1(1/2)Va(c) and i (1/9)Li(c) can be approximated
using central averaging with respect to ¢

+ n+1Ai(C)

the following expressions can be

(36)

2. n+(1/2)Ai(c) ~ nA,(c) Ae {V, I} 37
From transformation (32),
readily obtained:

et (/2 L (K7 Zri = a1 Vitgs — nVips

at /2L (67) Zhi = = (ng1Viims — nViima)

w2l Z5 = — (n+1Vm — Vi)

nt (/2 I (T7) 25 = nt1Vini = nVjps
n+(1/2)Vj(k+) = n+1Vkpj + ndp]

ntr/2)Vi(k™) = n+1VIjnj + Vi,

nt /2 Ve = a1 Vipe + nVink

nt(1/2) Vi) = nt1Vink + oV (38)
From transformation (33) it follows that

77-+1V = ‘/oz n+1vjz = _n‘/s’:i' (39)
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By substituting (37)—(39) into (36) we obtain

Yo + Ge, -
<Ykl + Y, + —0——2—> [ne1Vi(c) — nVi(e)]
= Ykz(n-i»lvkim + n—l—lvklpi) + Yll (n+1‘/;LnL + 7l+1V71pz)
+ Yoz * n—l-l‘/ozi - [ rkz(nvkrnz + ndsz)

+ Y]t(n‘/_],;u + HV;;)L)

+ }701 * nvorz + Gez * n‘/z(c)] (40)
Z .t Rmz
<ZJk' + Zk] + 8_2“—> [n+IIL(C) - nI'L(C)]
= _[n ]T;zk - nvfpk - ndrnj + nVl:p_) + TIV;;
+ Rmz : nIZ(C)]
—[n+1Vine = ne1Vipr = 41 Vieny +nt1 Vi,
+ 1Vl 4D

Finally, substituting (34) and (35) into (40) and (41) we
obtain voltages and currents at the center of the node at time
step n as

Ve = 2V (Vi + Vi) + 25 (Vi + Vi) + 2V, V7,
! Z(Ykn + Yr]L) + }’oi + Gez

42)

I»L(L) — 2(‘/;177@ B V;Lnk + Vkl'nj B Vljp] B ‘/sll) (43)

2(ij- + Zk]) + Zsi + Rmz

which are equivalent to (12) and (13) derived from the network
model.

The scattering matrix for the GSCN can be derived by
averaging appropriate field components at point (n.p,q,7)
in the mixed coordinate system. The procedure is similar to
that used in [13]. For example, by averaging the component
(V. + I;Zy;) with respect to 7, we obtain

2[,Vi(e) + nIJ(C)Zki]
=l Valk™) + /2L (67) Zk]

+ a2Vl ™) + nrqr L (K7) 2] (44)

Substituting (32) into (44) we derive a reflected voltage at the
time step n as

Vini = Vale) + 1i(€) Zie = Vigy, (45)
where V,(¢) and I,(c) are defined from (42) and (43). Simi-
larly, by averaging the component (V, — I,Zy,) with respect
to & it can be found that

Vvk‘;n = ‘/Z(c) - Ij(c)Zkl - Vklnz (46)
A set of 12 scattering equations for all link lines can be derived
in this manner and they are found to be in agreement with the
scattering equations (10) and (11) derived from the network
model.

Averaging V, and I, with respect to ¢ at the point (n.p, g,7)
gives

2-nA,(c) = oy Aic) + npa/nAile) Ae{V.I}
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which after using (33) gives the voltages reflected to the stubs
at the time step n as

V::L :Vvl(c) - V:)iz

Vi =L(c)Zs + V5. 47

These expressions are equivalent to (14) and (15) obtained
from the network model.

Because there are no incident voltages from lossy elements,
pulses “reflected” to these elements are determined directly
from the voltages and currents at the center of the node

Ve, = Vi(e) Vi, = Rmili(c). (48)

Therefore, the complete set of 24 scattering equations is
given by (45)-(48), which is identical to the scattering matrix
for the GSCN already derived from the network model and
presented in Fig. 2.

IV. DISCUSSION AND CONCLUSIONS

The formulation of the general symmetrical condensed node
given here is derived both from the equivalent network model
and from Maxwell’s equations. Thus far, it has been shown
in [10] that the network model [9] can be derived from a set
of decoupled series and shunt circuits by applying the charge
and flux conservation law and the continuity of electric and
magnetic fields [22]. Here, it has been shown that the scattering
equations described by (10)—(17), or equivalently by (45)-(48),
can also be established directly from Maxwell’s equations (26)
by using a mathematical model of central finite differencing
and averaging.

It has been shown that the GSCN unifies all available
condensed nodes into a single formulation and that all nodes
can be derived from the GSCN by imposing appropriate
additional conditions to the TLM constitutive relations (3)
and (4). The full equivalence established between the GSCN
TLM and Maxwell’s equations offers a rigorous theoretical
foundation to all nodes contained in the formulation of the
GSCN. This gives for the first time a field-based formulation
of the symmetrical super-condensed node (SSCN), which can
be derived from the GSCN by removing all stubs, and provides
the theoretical foundation for any new GSCN-based condensed
node scheme with an arbitrary number of stubs and different
link lines. Following the discussion about accuracy given in
[13], one may conclude that all the TLM methods based on
the GSCN will have second order accuracy.

The formulation of the GSCN derived from Maxwell’s
equations gives clear insight into the mapping between the
field components and the transmission line voltages in the
model. All field components can be obtained from the center
of a cell at the time moments » — 1,n,n + 1,---, using
transformation (28) and (42)-(43). In addition, fields can
be obtained at the cell’s boundaries at the time moments
n—1/2,n+1/2,---, by exploiting (38). Therefore, output
and the excitation in the GSCN can be taken/applied both at
the cell’s center and at the cell’s boundaries.

The derivation of the GSCN opens up the prospect of
developing new nodes with hitherto unexplored combinations
of link and stub parameters. Obviously, the node without stubs,



TRENKIC et al.: GENERAL SYMMETRICAL CONDENSED NODE FOR THE TLM METHOD

the SSCN, requires the least computer storage and is the most
efficient but its implementation is more complicated due to
the presence of link lines with different impedances. The only
reason why one should combine the complexity of such a
scheme with the extra storage of stubs is to achieve better
propagation characteristics. The possibilities opened up by
the GSCN formulation have been exploited to develop and
implement the matched SCN (MSCN) [23] and the adaptable
SCN (ASCN) [24]. These nodes use combinations of link
and stub parameters which offer improved accuracy and mini-
mized dispersion error in modeling inhomogeneous microwave
circuits [23], [24].
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