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Development of a General Symmetrical
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Abstract— A general symmetrical condensed node (GSCN)
for the transmission line modeling (TLM) method, with six
different link line characteristic impedances, six stubs, and six
Iossy elements is described for the first time. It unifies all the
cnrrently available condensed nodes into a single formulation
and provides the basis for the derivation of an infinite set of uew
nodes, includ]ng nodes with improved numerical characteristics.
The GSCN is derived in two ways: 1) from an equivalent network
model and 2) directly from Maxwell’s equations using central
differencing and averaging. The direct correspondence estab-
lished between the GSCN TLM and a finite difference scheme for
Maxwell’s equations provides a rigorous theoretical foundation
for all available TLM methods with condensed nodes.

I. INTRODUCTION

T HE SYMMETRICAL condensed node (SCN) [1] has
been the basis of the three-dimensional (3-D) trans-

mission line modeling (TLM) method for many years. To
allow for the modeling of general Iossless materials and
nonuniform grading of the mesh cells, the basic 12-port SCN is

augmented by three open- and three short-circuit stubs [1]. In a

development of the SCN referred to as the hybrid symmetrical
condensed node (HSCN) [2], the characteristic impedances of
the link lines are varied to account for mesh grading and to
model magnetic properties of the mesh, and three open-circuit
stubs are used to make up for any deficit in the capacitance.
A complementary HSCN, denoted as the Type II HSCN [3],
was recently developed using different link-line impedances

to model electric properties and short-circuit stubs to correct
for any deficit in inductance. In a further recent development
of the SCN, referred to as the symmetrical super-condensed
node (SSCN) [4]–[6], stubs are removed all together and all

medium parameters are modeled by varying the characteristic
impedances of the link lines. Modifications of the SCN to
account for electric and magnetic losses are described in [7]
and [8] and can be readily applied to all other condensed nodes.

In this paper, we present the development of a general
symmetrical condensed node (GSCN) that unifies all of the
existing condensed node schemes [1]–[8] into a single scheme
and provides a template for the derivation of new nodes with
improved propagation properties. A general formulation of the
link and stub parameters is presented in Section II that can be
used in connection with any TLM node. These parameters
are determined by a set of 12 equations that ensure proper
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modeling of the capacitance and inductance of the medium
and preservation of impulse synchronism. In Section III-A, the
scattering matrix for the GSCN is derived from the equivalent
network model [9], [10], which formulates scattering in a
node having six different link-line impedances, three open-
circuit stubs, three short-circuit stubs, and six lossy elements
for modeling electric and magnetic losses. Applying particular

constraints to the GSCN, the scattering matrices for all existing
condensed nodes [1]–[8] and their parameters are derived from
the formulation of the GSCN presented here.

A formal equivalence between the SCN TLM and the time-
domain finite-difference (FD-TD) method was first established
in [11]. Recently, it was shown that the SCN TLM can
be derived directly from Maxwell’s equations applying the
Method of Moments (MoM) [12]. The two above references,
however, consider only the simple 12-port SCN, which cannot
model inhomogeneous and lossy media and is restricted only
to the cubic cells. More practical schemes, namely’ the stub-
loaded SCN and the HSCN, were only very recently derived
directly from Maxwell’s equations, using central differencing

and averaging [13]. A direct theoretical derivation of the ‘Irype
II HSCN and the SSCN has not been presented in the literature
so far.

In Section III-B, we derive the GSCN directly from
Maxwell’s equations, using principles established in [13]. ‘This
derivation gives the same results for the field components in
the GSCN as obtained using the network model in Section
III-A, thus offering further evidence of the soundness of
the method. Since the symmetrical super-condensed node is
derived from the GSCN by removing stubs, a field-based
theoretical foundation to the SSCN is also established for the
first time.

II. GENERAL TLM CONSTITUTIVE RELATIONS

The total capacitance and inductance of the block of space
with linear dimensions Ax, Ay, AZ and material properties
~, ~ defined as diagonal tensors

Z=.OR ;, j] F=Mo~z ;9 :] (1)

modeled by a TLM node, in the i direction are given as [14]

C’: = ,l)E~j,% .:= ~0~~,* (2)

where i, j, k c {x, y, z} and i # j, k. Equations (2) must hold
for any TLM node, constructed by an arbitrq combination
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Fig. 1. 3-D TLM symtnetrical condensed node (SCN).

of link lines and stubs, and we refer to them as the general
TLM constitutive relations.

Consider the TLM symmetrical condensed node depicted in
Fig. 1. Let the distributed capacitance and inductance of an Z-
directed, j-polarized link line be denoted by indexes according
to their direction and polarization as CIJ and L,j. The total
capacitance of an open-circuit stub and the total inductance of
a short-circuit stub, contributing to the cell’s capacitance and
inductance, respectively, in the i direction, are denoted as C’;
and L:. The general TLM constitutive relations (2) applied to
the condensed node can be written as

(3)

(4)

The six equations defined in (3) and (4) by using all possible
combinations of i, j, k E {$, y, z}, represent the basis for the
correct modeling of the medium using a generally graded TLM
mesh with condensed nodes. They contain eighteen unknown
parameters, namely C,j and L,j of the six link lines, C: of
the three open-circuit stubs, and L: of the three short-circuit
stubs. Therefore, there are 12 degrees of freedom that can be

specified in the formulation Of particular W= Of wmmetric~
condensed nodes.

In time-domain TLM schemes, time synchronism must be
maintained in the mesh, i.e., the time step At must be the same
throughout and therefore six more conditions are imposed in
the form [5]

(5)

With these extra conditions, six degrees of freedom still remain
when solving (3)–(5).

It can be readily shown that the link line and stub parameters
of the existing 3-D time-domain condensed nodes can be
obtained by imposing different constraints to (3)–(5). Based

on these restrictions, we give a brief classification of the 3-D
TLM

1)

2)

3)

4)

In

condensed nodes used in the time-domain schemes.

Stub-loaded nodes use the same characteristic impedance
for all link lines, which sets six constraints of the form
L,j/C,J = const.

Hybrid nodes use either open or short circuit stubs, so
that three extra conditions are given by L: = O or
C; = O. The other three conditions are obtained by
demanding that all the impedances of lines modeling

either the same magnetic [2] or the same electric [3]
field components are equal.

Super-condensed nodes do not use stubs at all, therefore
six extra conditions are given by C: = O and L: = O [6].
General nodes use a combination of the link line and
stub parameters in a manner that generally differs from
the previous three special cases.

order to formulate the scattering procedure, the charac-
teristic admittances/impedances of the link and stub lines must
be determined, and they are defined as [15]

where Y,l, Zij are the characteristic admittance/impedance of

an i-directecl j-polarized link line and Yo~,Zs~ are the admit-
tance/impedmce of the open-/shon-circuit stubs contributing
the capacitance/inductance in the i direction. Using the time
synchronism condition (5) and definitions of the characteristic
admittances/impedances of the link and stub lines (6), the
general constitutive relations (3) and (4) can be rewritten as

In time-domain TLM, losses are modeled by

(7)

(8)

introducing

matched stubs, loaded to the nodes at the scattering points [16].
Their presence does not affect the general system of (3)-(5).
Given the effective electric and magnetic conductivities ~ei
and o~~ in the i direction, the parameters of lossy elements
are defined as [7], [8]

AjAk
(;–—

“ – ‘e’ Ai
l?~ = Q~i%.

III. GENERAL SYMMETRICAL CONDENSED NODE

It can be seen from the TLM constitutive relations (3)

(9)

and
(4) that the contributions to the capacitance and the inductance
required in a model can be divided between the link lines
and stubs of a TLM node. Theoretically, it is possible to
develop a general condensed node that will contain six stubs,
six lossy elements, and have all six link lines with different
characteristic impedance. The merit of this formulation is
that it offers scope for optimization by selecting a particular
combination of stubs and link line parameters, which, however,
must satisfy (7) and (8). The properties of the general sym-
metrical condensed node (GSCN) are obtained below using
two different approaches, namely: 1) an equivalent network
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Fig. 2. Scattering matrix of the general symmetrical ccmdensed node (GSCN). (The first row and column are not part of the matrix. They give the
port numbering for convenience.)

model and 2) central differencing and averaging of Maxwell’s

equations.

A. Derivation from the Network Model

Scattering in a condensed node scheme is traditionally de-
rived by imposing unitary and other conditions on its scattering

matrix [1]. However, a network model introduced in [9] and
generalized and validated in [10] shows that scattering in
condensed nodes can be conveniently described by scattering
equations derived directly from the set of “equivalent” shunt
and series circuits. For historical reasons and in order to allow
comparisons with previous nodes, we also present the complete

scattering matrix for the GSCN. For the same reasons, we keep

the original node port numbering scheme [1], [15], although
more elegant numbering schemes described recently [17], [18]

yield a more symmetrical form of the scattering matrix.
In the notation used here a voltage coming from the negative

side of the node (assuming the origin of coordinates at the cen-
ter of the node) along an i-directed, j-polarized transmission

line is denoted as V~nj, whereas a voltage coming from the
positive side of the same line is given as &j (i, j ~ {~, Y, ~}
and z # j). Voltages on the open- and short-circuit stubs are

VO; and V,,, whereas the voltages on electric and magnetic
loss elements are V.i and Vm,. In all cases, voltages incident

on the node have superscript i while reflected voltages have
superscript r.

By following the principles established in [9] and [10], the
complete scattering procedure in the GSCN can be described
by the following equations:

<~j = Vj ~ IkZij – ~~j (lo)

& = Vj + IkZ~J – @nJ (11)

where the upper and lower signs apply, respectively, for
indexes (i, j,k) E {(z, Y,z), (Y, z,z), (z, x, Y)} ~d (i~,~) ~

{($, .z, Y), (Y, z, ~), (z, Y,z)}. The equivalent voltage in the i
direction, V,, is given by

) + 2YJyni + ~,,) + %iv:t2Yj~ (V;nz + V;pi
x= .—

Z(ykt + Yil) + % + Get

(12)

and the equivalent current contributing to the magnetic field
in the i direction, Ii, is given by

2(v$k – V}rtk + V;.j – V;pj – V;i)
1%= (13)

Z(Zjk + Zkj) + -Zsi + Rmi

where (i)j, k) e {(z, y, z), (y, .z,z), (.z, $, Y)}. The Vo%es

reflected to stubs and lossy elements are given as

VA = v, – vi. (14)

V; = I,Z~, ;’V’, (15)

v’~=~ “ (16)

V~i = RmzIi (17)

where i e {$, y, z}.

Using the scattering equations (10)–(17), we obtain the
scattering matrix for the GSCN, given in Fig. 2. Because there
are no incident voltages from lossy elements, the matrix S
is written as a 24 x 18 matrix rather then a full 24 x 24
square matrix with zero columns 19–24. The elements clf the

scattering matrix S shown in Fig. 2 are

a ,3 = QJ – bil – dij bzj = Q] Ckj

c ,, =QJ – b,, + d,, – 1 dij = Pkkq

fk =2(1 - pk - U,) e%~= bkl

gj =2(1– Qj –IVj) i ij = dij

hJ=gj–l j~=l–fk

lqj = e,j lJ = gj

mk = Zuk nk = ‘?TLk (18)
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with

Y~3
Ch = Y,j ● y~~ =

z~j

Zij + Zkj (19)

(20)

( )Y.] + G.J ‘1
Q~ = 1+ 2(Kj +Y~J)

( )

z.k + R~~ ‘1
Pk= 1+

W’tj + Z’Jz)

Wj =
Gel

Z(y,j + Ykj ) + Y.j + Gej

Uk =
Rmk

(24)
2(.Z.J + Zj, ) + Zsk + &n/c

(21)

(22)

(23)

where indexes i, j, k take all possible combinations of x, y, z.
The matrix S can be written in the following partitioned

form, where each submatrix represents one of the matrices
outlined in Fig. 2

s=

1#3(31:; ~(3x3) s::341

The indexes ln, OS,SS, el, ml, indicating the ph

of each submatrix, stand for link line, open-circL..

(25)

cal purpose

stub, short-
circuit stub, electric loss, and magnetic loss voltage ports,
respectively. The superscripts of the submatrices define their
size. Some partitions can be removed from the matrix if stubs
or lossy elements are not used. For example, if short-circuit
stubs and lossy elements are not used in the node, all partitions
with indexes ss, el and ml can be removed from S giving a
15 x 15 matrix.

By removing lossy elements from the node, setting G.j = O
and Rmk = O in (2 1)–(24) and eliminating rows 19–24 in the
scattering matrix S, it can be shown that the Iossless GSCN
conserves energy by confirming that STYS = Y [19], where
Y is a diagonal matrix with elements corresponding to the
characteristic admittances of link lines and stubs.

The matrix S has identical structure to the scattering matrix
for the stub-loaded SCN [15]. By setting the characteristic
impedances of link lines equal to the intrinsic impedance of
the background medium, i.e., letting Z,j = Z., the elements

of the GSCN and the SCN scattering matrix become equal, as
expected. If an homogeneous lossless medium is modeled on a
uniform mesh, then stubs and lossy elements can be eliminated
by setting YOI = Zsk = G.j = Rnk = O in (21)–(24) and the
partition St. of the matrix S becomes equal to the original
12-port SCN matrix [1] with the elements aij = C,j = O and
b,j = d%] = 1/2.

Similarly, by setting Z,j = 23, and Z.~ = O, for all
combinations of indexes i, j, k 6 {x, y, z}, i # j, k and

eliminating partitions of S related to the short-circuit stubs,

the scattering matrix of the HSCN [2], [3] is derived. The
scattering matrix for the Type II HSCN [3] can be derived

from S by setting Y,j = Y&, Yoj = O and eliminating the
partitions related to the open-circuit stubs.

The scattering matrix for the SSCN is derived from the
GSCN by eliminating row/columns 13–18 of S and setting
YOj = Z’.k = O. If a Iossless medium is modeled, then
the SSCN scattering matrix is defined by the submatrix Sl~,
with elements a~j = 1 – bil – d%~,Ctj = dij – bij, bil =

CM and dij = L,j, as derived in [6]. This matrix applies
also for frequency-domain TLM schemes with different line
impedances [20], [21].

B. Derivation from Maxwell’s Equations

We now derive the GSCN TLM scheme directly from
Maxwell’s equations, by employing a procedure similar to that
used in [13]. Maxwell’s equations, written in the Cartesian
coordinate system, are given as

6’Ei ~Hk 8Hj

‘OE”i at z aj’ – ak – ‘eiEi

8Hi tlEj ~Ek

‘okra at = ak – aj – ‘m’
H,. (26)

Six equations are contained in (26) if the mapping of indexes
is introduced as

(i.i>~) f= {(~, Y,~), (Y, ~>z),(z, z,Y)}. (27)

The mapping given by (27) will be used throughout

this subsection. It allows the rotation of dummy indexes

z, j, k in an arbitrary expression F, making the expressions

~(i,j, k), ~(j, k, i) and I’(k, i,j) equivalent.
After performing coordinate and field transformations given

by

k = ~Ak; t = &

Ek = –Vh/Ak; Hk = Ik/~k (28)

where k E {z, y, z}, Maxwell’s equations (26) can be rewrit-

ten as

Aj@.k W, ~ 81k _ ~ Aj’Ak
eo~.t AiAt ~; = ‘& – ~ —~

‘7 Ai
AjAk i31i avj avl AjAk

—1,. (29)wok ~aAt ~f = ~ – ~ – ffm% Ai

By further inserting (7)–(9) into (29), we obtain

In this formulation, Y, Z, G, and R can be formally con-
sidered as coefficients introduced into Maxwell’s equations
to conveniently represent material parameters and cell dimen-
sions. They are chosen in a manner to allow for sufficient de-
grees of freedom demanded by the GSCN. However, through
(7)–(9), these coefficients have the physical interpretation as
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the link and stub admittances/impedances of the GSCN. In the
derivation of the SCN presented in [12] these coefficients were
not explicitly introduced since there were no stubs and all the
link-line impedances were identical.

Following [13] we introduce mixed space-time coordinates

as

(k=~+~; ~k=k–~

for k E {z, y, z} aud rewrite (30) as

(

Yji 8(U – ~j.zh~) 6’(E + ~jzhi)

T ~<h – ~~h )

(31)

By using central-differencing at point (n, p, q, r) [13], where
n is a time and p, q, r are space coordinates, a set of finite

difference equations can be obtained from (31). The space
coordinates of the cell’s boundaries and the cell’s center are

referred to as

(P+ ~,q, r) =($*) (p, q+~, r) = (Y*)

(P)q>r+ ;) =(%+) (P>q>r) = (c).

The terms associated with the mixed coordinates & are
difference as, for example

- [n-(1 /2)u(~-) - n-(v+(~-)m
whereas terms associated with qh are difference as, for

example

– [TL+(I/2)~(k-) + ~+(@~(k-)zd

The terms associated with the time coordinate; are difference
as, for example

ax

a;
— = ~+(1/2)v2(C)– n–(1/2)vi(c).

Similarly as in [13], we now introduce the variable transfor-
mation in order to establish relationships between the electric
and magnetic field components at the cell boundaries and the
incident and reflected voltages at the cell center:

n7(l/2)vt(~+)+ ql/2)L(k+)ai = 2. ~v;;;

T=W2)vZ(k-)= W1/2)~~(k-)zk~= 2 “~v:;;
TW2)v~(~+)= MV2)~k(~+)z~~= 2 “~vjt;:
wm)v~(~-) * ww)~~(~-)z~i = 2 “w;; (32)

where the upper and lower signs, respectively, correspond to
the incident and reflected voltages.

A similar transformation which establishes a correspon-
dence between the electrical and magnetic field

at the cell center and the incident and reflected
the open and short stubs is given as

n+(l/2)wc) = 2. ~vy
71T(l/2)L(c)Z9!= + 2 . ~vy’.

components
voltages, on

(33)

By substituting transformations (32) and (33) into difference
equations obtained from (31) we derive

Yki “ (nv;ni -1-nv;pt ) + vi “ (n~.~ + .V&) + Yoi . .v;~
= Yki “(nv:nt + nvipi ) + V, ~(.qh + .Tpt)

+Y’o, . ~v; + G.i . ~vt(c) (34)

nvj~k – .VJ~k – nv~n~ + .V~Pj + .V,! + Rmi “ .1; (c)

= ‘[n~nk - n~pk - .V;nj + .V;pj + .Wz]. 1(35)

These two equations represent, respectively, the charge and
the flux conservation laws in the i-direction [22].

Another set of finite difference equations can be obtained
from (30) by using central differencing at point (n +
l/2, p, q, r)

( )
yh~ + ~~ + : [m+lti(c) – n~(c)] + G.i “ n+(l/2)~(c)

= [n+(l/2)~j(~+) - n+(l/2)4(~-)1

- [~+(V2)1d~+) - ~+(1/2)1df)]

( )
Zjk + z~j + ~ [n+lL(c) – n&(c)] +&z “n+(l/2)L(c)

= [rt+(l/2)Vk(~+) - n+(l/2)Vk(~-)]

- [n+(w)v(~+) - n+(m)w~-)1 ~ (36)

Terms 7t+(1/2) v, (c) and ~+w2)L (c) can be approximated
using central averaging with respect to ;

2. n+(l/2)Ai(c)R A(c)+ n+lAi(c) A E {V,1}. (37)

From transformation (32), the following expressions
readily obtained:

+ ‘i v’n+(@~(k )zh~ = ~+lvkpi — ~ kpt

‘i ~,
n+(l/2)~j(k —)Zki = — (n+lvk~i — n knl )

n+(l/2)~k(~+)zji = — (~+lv;pi — ~vjjt)
.—

n+(l/2)~k(l )z~z = ~+lvjtni – .v&i

7L+(l/2)w~+)= n+l%j + nvkrpj
—

m+(wvj(~ ) = ~+lwnj+ nwnj
n+(l/2)vk(~+)= ~+lvj~k + ~vj~k

.—
n+(l/2)vk(3 ) = ~+lvjz~k + nvjrmk.

From transformation (33) it follows that

.+1 v;~= v“~ Oi .+lV:, = – v“n 5i.

can be

(38)

(39)
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By substituting (37)–(39) into (36) we obtain

( I’;, + Get
Yk, + Y,* + ~ )[n+lw(c)- nv(c)l

Finally, substituting (34) and (35) into (40) and (41) we

obtain voltages and currents at the center of the node at time
step n as

(42)

which are equivalent to (12) and (13) derived from the network
model.

The scattering matrix for the GSCN can be derived by
averaging appropriate field components at point (n, p, q, r)
in the mixed coordinate system. The procedure is similar to

that used in [13]. For example, by averaging the component

(K + lj-Z~i) with respect to r)~ we obtain

2[T3V(C)+ Jj(c)zki]

= [rt-(1/2)w(~+)+ .-(l/2)~3(~+)zi
+ [n+(l/2)z(k-) + ~+(1/2)~3(~-)zktl (44)

Substituting (32) into (44) we derive a reflected voltage at the
time step n as

where V,(c) and I,(e) are defined from (42) and (43). Simi-
larly, by averaging the component (~ – ~j .zkz ) with respect

to <k it can be found that

A set of 12 scattering equations for all link lines can be derived
in this manner and they are found to be in agreement with the
scattering equations (10) and (11) derived from the network
model.

Averaging ~ and 1, with respect to ; at the point (n. p, q, r)
gives

2. mA, (c) = n_(l/2)z%(c) + r,+(l/2)At (c) A ~ {V,I}

which after using (33) gives the voltages reflected to the stubs

at the time step n as

v: = y (c)– V:t
v; = I,(c)z,, + V:i. (47)

These expressions are equivalent to (14) and (15) obtained
from the network model,

Because there are no incident voltages from lossy elements,
pulses “reflected” to these elements are determined directly
from the voltages and currents at the center of the node

V.; = Vi(c) V;, = RJi(c). (48)

Therefore, the complete set of 24 scattering equations is
given by (45)–(48), which is identical to the scattering matrix
for the GSCN already derived from the network model and
presented in Fig. 2.

IV. DISCUSSIONAND CONCLUSIONS

The formulation of the general symmetrical condensed node

given here is derived both from the equivalent network model
and from Maxwell’s equations. Thus far, it has been shown

in [10] that the network model [9] can be derived from a set

of decoupled series and shunt circuits by applying the charge
and flux conservation law and the continuity of electric and
magnetic fields [22]. Here, it has been shown that the scattering

equations described by (10)–(17), or equivalently by (45)–(48),
can also be established directly from Maxwell’s equations (26)
by using a mathematical model of central finite differencing
and averaging.

It has been shown that the GSCN unifies all available
condensed nodes into a single formulation and that all nodes

can be derived from the GSCN by imposing appropriate
additional conditions to the TLM constitutive relations (3)

and (4). The full equivalence established between the GSCN
TLM and Maxwell’s equations offers a rigorous theoretical
foundation to all nodes contained in the formulation of the
GSCN. This gives for the first time a field-based formulation
of the symmetrical super-condensed node (SSCN), which can
be derived from the GSCN by removing all stubs, and provides
the theoretical foundation for any new GSCN-based condensed
node scheme with an arbitrary number of stubs and different
link lines. Following the discussion about accuracy given in

[13], one may conclude that all the TLM methods based on
the GSCN will have second order accuracy.

The formulation of the GSCN derived from Maxwell’s
equations gives clear insight into the mapping between the
field components and the transmission line voltages in the
model. All field components can be obtained from the center
of a cell at the time moments n – 1, n, n + 1, . . . . using
transformation (28) and (42)–(43). In addition, fields can
be obtained at the cell’s boundaries at the time moments
n–1/2, rz+ l/2,..., by exploiting (38). Therefore, output

and the excitation in the GSCN can be taken/applied both at
the cell’s center and at the cell’s boundaries.

The derivation of the GSCN opens up the prospect of
developing new nodes with hitherto unexplored combinations
of link and stub parameters. Obviously, the node without stubs,
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the SSCN, requires the least computer storage and is the most
efficient but its implementation is more complicated due to
the presence of link lines with different impedances. The only
reason why one should combine the complexity of such a

scheme with the extra storage of stubs is to achieve better
propagation characteristics. The possibilities opened up by

the GSCN formulation have been exploited to develop and
implement the matched SCN (MSCN) [23] and the adaptable
SCN (ASCN) [24]. These nodes use combinations of link
and stub parameters which offer improved accuracy and mini-
mized dispersion error in modeling inhomogeneous microwave
circuits [23], [24].
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